Exercise 2.1

Show that Co is a closed subspace of C and C is a closed
cubspace of b.
(a) Co is a closed subspace of C.
(ii) By definition, Co is a subset of C.
(iv) For any
$$\alpha, \beta \in \mathbb{R}, x, y \in C_0$$
,
from $(\alpha \pi(n) + \beta y(n)) = \alpha from \pi(n) + \beta from y(n)$
 $= \alpha \cdot 0 + \beta \cdot 0$
 $= 0$
Thus, $\alpha \chi + \beta y \in C_0$
Since $\chi_{n_0} \in C_0$, there exists $N \in \mathbb{N}$ such that $\|\chi_{n_0} - \chi\|_{loo} \leq \epsilon/2$
Since $\chi_{n_0} \in C_0$, there exists $N \in \mathbb{N}$ such that for any $k > N$,
 $|\chi_{n_0}(k)| < \epsilon/2$.
By Triangle Inequality, for any $k > N$,
 $|\chi_{n_0}(k)| \leq |\chi_{(k)} - \chi_{n_0}(k)| + |\chi_{n_0}(k)|$
 $\leq ||\chi_{n_0} - \chi||_{c_0} + |\chi_{n_0}(k)|$
 $\leq ||\chi_{n_0} - \chi||_{c_0} + |\chi_{n_0}(k)|$
 $\leq \epsilon/2 + \epsilon/2$
Thus, for α doeed subspace of C.

(b) C is a closed subspace of loo.
Proof: (i) Since any convergent sequence is bounded,
C is a cubset of low.
(ii) For any d.
$$\beta \in |R$$
 and $x, y \in C$.
find $(d \times (k) + \beta y(k)) = d find \times (k) + \beta find y(k)$.
Thus, $d \times + \beta y \in C$.
Therefore, C is a subspace of loo.
(iii) For any $x \in C$ ($n \in N$) and $x \in loo$ suppose find $||x_n - x||_{\infty} = 0$.
Fix $E > 0$. Then there exists $n \in EN$ such that $||x_n - x||_{\infty} = 0$.
Fix $E > 0$. Then there exists $n \in EN$ such that $||x_n - x||_{\infty} < \epsilon/2$.
Since $x_n \in C$, $L := find \times (k)$ exists.
Then there exists $N \in N$ such that for any $k > N$,
 $|x_{n}(k) - L| < \epsilon/2$.
By Triangle Inequality, for any $k > N$,
 $|x(k) - L| \leq |x(k) - x_n(k)| + |x_n(k) - L|$
 $\leq ||x_{n} - x||_{\infty} + |x_{n}(k) - L|$
 $\leq \epsilon/2 + \epsilon/2$
 $= \epsilon$.
Therefore, find $x(k) = L$, which implies $x \in C$.
Hence, C is a closed subspace of loo .

Exercise 2.6

Show that So is bounded on CEO. 1] when equipped with the 11.1100 - norm, but not when equipped with the 11.11, - norm.

(a) So is bounded on
$$(C[0, 1], ||\cdot||_{\infty})$$
.
Proof: For any $f \in C[0, 1]$, $|S_0f| = |fro_3| \leq \sup_{x \in [0, 1]} |f(x)| = ||f||_{\infty}$
Hence, So is bounded on $(C[0, 1], ||\cdot||_{\infty})$.

 \Box

Exercise 2.9 Prove that Co is not a Banach space in the $||\cdot||_2 - norm$. Proof: Put $\pi(k) = \frac{1}{\sqrt{k}}$. Since $\lim_{k \to \infty} \frac{1}{\sqrt{k}} = 0$, $\pi \in C_0$.

However, $|| \mathbf{x} ||_2 = \left(\sum_{k=1}^{\infty} (\frac{1}{k})^2\right)^{\frac{1}{2}} = \left(\sum_{k=1}^{\infty} \frac{1}{k}\right)^{\frac{1}{2}} = \infty$

Hence, Il·II2 is not a norm on Co.